Sample | Avg. num of kids in sample |
---|---|
1 | 1.2 |
2 | 2.5 |
3 | 2.2 |
4 | 2.4 |
5 | 1.7 |
6 | 1.9 |
7 | 2.5 |
8 | 1.4 |
POL51
University of California, Davis
September 30, 2024
Quantifying uncertainty
The confidence interval
Are we sure it’s not zero?
We know our analysis is based on samples, and different samples give different answers:
Sample | Avg. num of kids in sample |
---|---|
1 | 1.2 |
2 | 2.5 |
3 | 2.2 |
4 | 2.4 |
5 | 1.7 |
6 | 1.9 |
7 | 2.5 |
8 | 1.4 |
Turns out that if our samples are representative of the population, then estimates from large samples will tend to be pretty damn close
So if sample is good ✅ and “big” ✅ then most of the time we’ll be OK ✅
We’ve shown that if we take many (large) random samples, most of the averages of those samples will be close to population parameter
But in real life we only ever have one sample (e.g., one poll)
How do we get a sense for uncertainty from our one sample?
❌ Statistical theory
✅ Simulation
In some cases, both get you to the same answer, in others, only one works
We want a sense for how uncertain we should feel on estimates drawn from our sample
Our sample is gss_sm
, and we have 2,867 observations
year | id | ballot | age | childs | sibs | degree | race |
---|---|---|---|---|---|---|---|
2016 | 1274 | 2 | 29 | 3 | 1 | Lt High School | White |
2016 | 392 | 3 | 41 | 3 | 8 | High School | Black |
2016 | 1669 | 3 | 27 | 0 | 1 | Bachelor | White |
2016 | 2430 | 3 | 62 | 2 | 2 | Bachelor | White |
2016 | 796 | 2 | 33 | 3 | 4 | High School | Black |
How confident are we in the estimate we get from this sample, given its size?
If we take lots of samples of size 20 \(\rightarrow\) uncertainty in a sample of 20
If we take lots of samples of size 100 \(\rightarrow\) uncertainty in a sample of 100
So to see how uncertain we should feel about gss_sm
, we should take many samples that are the same size as gss_sm
Note
nrow(DATA)
tells you how many observations in data object
If we have a dataset of 2,867 observations and ask R to randomly pick 2,867 observations, we’ll just get a bunch of copies of the original dataset
Solution: sample with replacement \(\rightarrow\) once we draw an observation it goes back into the dataset, ad can be sampled again
If we were sampling 4 of these delicious fruits:
[1] "Mango" "Pineapple" "Banana" "Blackberry"
It would look like this, with and without replacement:
Sample, no replace | Mango | Banana | Pineapple | Blackberry |
Sample, replace | Pineapple | Pineapple | Banana | Blackberry |
How uncertain should we be of our estimate of the avg. number of kids in the US, Given that it’s based on our one sample, gss_sm
? We can bootstrap:
boot_kids = gss_sm %>%
rep_sample_n(size = nrow(gss_sm), reps = 1000, replace = TRUE) %>%
summarise(avg_kids = mean(childs, na.rm = TRUE))
boot_kids
replicate | avg_kids |
1 | 1.88 |
2 | 1.85 |
3 | 1.88 |
4 | 1.87 |
5 | 1.88 |
6 | 1.87 |
7 | 1.83 |
8 | 1.84 |
9 | 1.82 |
10 | 1.77 |
11 | 1.85 |
12 | 1.88 |
13 | 1.85 |
14 | 1.88 |
15 | 1.85 |
16 | 1.82 |
17 | 1.81 |
18 | 1.86 |
19 | 1.82 |
20 | 1.88 |
21 | 1.94 |
22 | 1.84 |
23 | 1.87 |
24 | 1.9 |
25 | 1.83 |
26 | 1.85 |
27 | 1.84 |
28 | 1.84 |
29 | 1.84 |
30 | 1.84 |
31 | 1.82 |
32 | 1.86 |
33 | 1.86 |
34 | 1.83 |
35 | 1.85 |
36 | 1.82 |
37 | 1.86 |
38 | 1.84 |
39 | 1.83 |
40 | 1.8 |
41 | 1.81 |
42 | 1.86 |
43 | 1.87 |
44 | 1.79 |
45 | 1.9 |
46 | 1.84 |
47 | 1.9 |
48 | 1.86 |
49 | 1.8 |
50 | 1.84 |
51 | 1.85 |
52 | 1.86 |
53 | 1.85 |
54 | 1.88 |
55 | 1.85 |
56 | 1.85 |
57 | 1.86 |
58 | 1.87 |
59 | 1.87 |
60 | 1.86 |
61 | 1.86 |
62 | 1.9 |
63 | 1.87 |
64 | 1.86 |
65 | 1.84 |
66 | 1.85 |
67 | 1.87 |
68 | 1.88 |
69 | 1.81 |
70 | 1.87 |
71 | 1.82 |
72 | 1.86 |
73 | 1.84 |
74 | 1.84 |
75 | 1.87 |
76 | 1.84 |
77 | 1.87 |
78 | 1.85 |
79 | 1.88 |
80 | 1.89 |
81 | 1.92 |
82 | 1.88 |
83 | 1.92 |
84 | 1.83 |
85 | 1.86 |
86 | 1.83 |
87 | 1.88 |
88 | 1.83 |
89 | 1.88 |
90 | 1.88 |
91 | 1.86 |
92 | 1.9 |
93 | 1.9 |
94 | 1.85 |
95 | 1.81 |
96 | 1.84 |
97 | 1.88 |
98 | 1.85 |
99 | 1.78 |
100 | 1.82 |
101 | 1.85 |
102 | 1.85 |
103 | 1.86 |
104 | 1.8 |
105 | 1.87 |
106 | 1.84 |
107 | 1.85 |
108 | 1.86 |
109 | 1.91 |
110 | 1.87 |
111 | 1.82 |
112 | 1.86 |
113 | 1.82 |
114 | 1.87 |
115 | 1.86 |
116 | 1.81 |
117 | 1.84 |
118 | 1.89 |
119 | 1.84 |
120 | 1.88 |
121 | 1.87 |
122 | 1.88 |
123 | 1.84 |
124 | 1.77 |
125 | 1.85 |
126 | 1.88 |
127 | 1.86 |
128 | 1.88 |
129 | 1.88 |
130 | 1.86 |
131 | 1.82 |
132 | 1.81 |
133 | 1.9 |
134 | 1.87 |
135 | 1.89 |
136 | 1.84 |
137 | 1.91 |
138 | 1.82 |
139 | 1.84 |
140 | 1.82 |
141 | 1.81 |
142 | 1.89 |
143 | 1.83 |
144 | 1.87 |
145 | 1.79 |
146 | 1.85 |
147 | 1.85 |
148 | 1.87 |
149 | 1.85 |
150 | 1.85 |
151 | 1.83 |
152 | 1.84 |
153 | 1.88 |
154 | 1.87 |
155 | 1.85 |
156 | 1.85 |
157 | 1.89 |
158 | 1.82 |
159 | 1.84 |
160 | 1.85 |
161 | 1.88 |
162 | 1.9 |
163 | 1.81 |
164 | 1.89 |
165 | 1.81 |
166 | 1.9 |
167 | 1.83 |
168 | 1.85 |
169 | 1.82 |
170 | 1.84 |
171 | 1.81 |
172 | 1.85 |
173 | 1.85 |
174 | 1.82 |
175 | 1.85 |
176 | 1.82 |
177 | 1.82 |
178 | 1.89 |
179 | 1.91 |
180 | 1.9 |
181 | 1.85 |
182 | 1.84 |
183 | 1.88 |
184 | 1.86 |
185 | 1.84 |
186 | 1.86 |
187 | 1.83 |
188 | 1.81 |
189 | 1.87 |
190 | 1.88 |
191 | 1.87 |
192 | 1.85 |
193 | 1.91 |
194 | 1.86 |
195 | 1.83 |
196 | 1.83 |
197 | 1.81 |
198 | 1.86 |
199 | 1.91 |
200 | 1.85 |
201 | 1.81 |
202 | 1.83 |
203 | 1.85 |
204 | 1.82 |
205 | 1.9 |
206 | 1.81 |
207 | 1.89 |
208 | 1.8 |
209 | 1.85 |
210 | 1.82 |
211 | 1.88 |
212 | 1.87 |
213 | 1.84 |
214 | 1.84 |
215 | 1.86 |
216 | 1.82 |
217 | 1.86 |
218 | 1.86 |
219 | 1.86 |
220 | 1.85 |
221 | 1.88 |
222 | 1.9 |
223 | 1.83 |
224 | 1.87 |
225 | 1.88 |
226 | 1.88 |
227 | 1.86 |
228 | 1.88 |
229 | 1.84 |
230 | 1.79 |
231 | 1.88 |
232 | 1.88 |
233 | 1.79 |
234 | 1.82 |
235 | 1.85 |
236 | 1.84 |
237 | 1.83 |
238 | 1.79 |
239 | 1.83 |
240 | 1.84 |
241 | 1.88 |
242 | 1.81 |
243 | 1.84 |
244 | 1.88 |
245 | 1.83 |
246 | 1.82 |
247 | 1.81 |
248 | 1.83 |
249 | 1.86 |
250 | 1.84 |
251 | 1.87 |
252 | 1.83 |
253 | 1.88 |
254 | 1.82 |
255 | 1.83 |
256 | 1.84 |
257 | 1.87 |
258 | 1.9 |
259 | 1.85 |
260 | 1.83 |
261 | 1.85 |
262 | 1.85 |
263 | 1.86 |
264 | 1.85 |
265 | 1.84 |
266 | 1.85 |
267 | 1.88 |
268 | 1.84 |
269 | 1.83 |
270 | 1.84 |
271 | 1.88 |
272 | 1.81 |
273 | 1.86 |
274 | 1.85 |
275 | 1.89 |
276 | 1.93 |
277 | 1.89 |
278 | 1.83 |
279 | 1.88 |
280 | 1.84 |
281 | 1.84 |
282 | 1.8 |
283 | 1.83 |
284 | 1.85 |
285 | 1.89 |
286 | 1.86 |
287 | 1.84 |
288 | 1.84 |
289 | 1.92 |
290 | 1.83 |
291 | 1.9 |
292 | 1.9 |
293 | 1.93 |
294 | 1.84 |
295 | 1.9 |
296 | 1.82 |
297 | 1.86 |
298 | 1.83 |
299 | 1.88 |
300 | 1.83 |
301 | 1.85 |
302 | 1.84 |
303 | 1.84 |
304 | 1.89 |
305 | 1.91 |
306 | 1.82 |
307 | 1.87 |
308 | 1.9 |
309 | 1.86 |
310 | 1.83 |
311 | 1.9 |
312 | 1.88 |
313 | 1.85 |
314 | 1.87 |
315 | 1.86 |
316 | 1.87 |
317 | 1.89 |
318 | 1.84 |
319 | 1.87 |
320 | 1.85 |
321 | 1.85 |
322 | 1.87 |
323 | 1.83 |
324 | 1.91 |
325 | 1.9 |
326 | 1.83 |
327 | 1.84 |
328 | 1.87 |
329 | 1.89 |
330 | 1.84 |
331 | 1.78 |
332 | 1.79 |
333 | 1.88 |
334 | 1.92 |
335 | 1.84 |
336 | 1.8 |
337 | 1.92 |
338 | 1.86 |
339 | 1.87 |
340 | 1.89 |
341 | 1.81 |
342 | 1.79 |
343 | 1.79 |
344 | 1.84 |
345 | 1.84 |
346 | 1.91 |
347 | 1.76 |
348 | 1.84 |
349 | 1.89 |
350 | 1.82 |
351 | 1.8 |
352 | 1.88 |
353 | 1.92 |
354 | 1.82 |
355 | 1.87 |
356 | 1.93 |
357 | 1.87 |
358 | 1.92 |
359 | 1.81 |
360 | 1.86 |
361 | 1.81 |
362 | 1.83 |
363 | 1.82 |
364 | 1.83 |
365 | 1.85 |
366 | 1.83 |
367 | 1.84 |
368 | 1.84 |
369 | 1.9 |
370 | 1.9 |
371 | 1.84 |
372 | 1.82 |
373 | 1.86 |
374 | 1.86 |
375 | 1.9 |
376 | 1.84 |
377 | 1.88 |
378 | 1.9 |
379 | 1.79 |
380 | 1.87 |
381 | 1.87 |
382 | 1.79 |
383 | 1.87 |
384 | 1.77 |
385 | 1.81 |
386 | 1.86 |
387 | 1.87 |
388 | 1.82 |
389 | 1.89 |
390 | 1.85 |
391 | 1.82 |
392 | 1.83 |
393 | 1.88 |
394 | 1.84 |
395 | 1.82 |
396 | 1.91 |
397 | 1.81 |
398 | 1.89 |
399 | 1.85 |
400 | 1.85 |
401 | 1.85 |
402 | 1.85 |
403 | 1.82 |
404 | 1.84 |
405 | 1.8 |
406 | 1.86 |
407 | 1.85 |
408 | 1.84 |
409 | 1.79 |
410 | 1.84 |
411 | 1.84 |
412 | 1.9 |
413 | 1.89 |
414 | 1.84 |
415 | 1.89 |
416 | 1.8 |
417 | 1.88 |
418 | 1.87 |
419 | 1.9 |
420 | 1.81 |
421 | 1.82 |
422 | 1.88 |
423 | 1.87 |
424 | 1.88 |
425 | 1.9 |
426 | 1.79 |
427 | 1.84 |
428 | 1.82 |
429 | 1.88 |
430 | 1.76 |
431 | 1.84 |
432 | 1.83 |
433 | 1.83 |
434 | 1.81 |
435 | 1.89 |
436 | 1.86 |
437 | 1.84 |
438 | 1.86 |
439 | 1.84 |
440 | 1.86 |
441 | 1.86 |
442 | 1.88 |
443 | 1.88 |
444 | 1.85 |
445 | 1.88 |
446 | 1.86 |
447 | 1.83 |
448 | 1.84 |
449 | 1.85 |
450 | 1.92 |
451 | 1.82 |
452 | 1.93 |
453 | 1.84 |
454 | 1.82 |
455 | 1.85 |
456 | 1.8 |
457 | 1.86 |
458 | 1.84 |
459 | 1.84 |
460 | 1.84 |
461 | 1.83 |
462 | 1.83 |
463 | 1.84 |
464 | 1.9 |
465 | 1.82 |
466 | 1.85 |
467 | 1.87 |
468 | 1.82 |
469 | 1.83 |
470 | 1.83 |
471 | 1.88 |
472 | 1.75 |
473 | 1.87 |
474 | 1.94 |
475 | 1.86 |
476 | 1.84 |
477 | 1.85 |
478 | 1.9 |
479 | 1.85 |
480 | 1.76 |
481 | 1.85 |
482 | 1.83 |
483 | 1.85 |
484 | 1.85 |
485 | 1.85 |
486 | 1.87 |
487 | 1.83 |
488 | 1.8 |
489 | 1.88 |
490 | 1.8 |
491 | 1.87 |
492 | 1.9 |
493 | 1.87 |
494 | 1.88 |
495 | 1.86 |
496 | 1.89 |
497 | 1.89 |
498 | 1.84 |
499 | 1.87 |
500 | 1.85 |
501 | 1.82 |
502 | 1.82 |
503 | 1.83 |
504 | 1.8 |
505 | 1.86 |
506 | 1.89 |
507 | 1.84 |
508 | 1.86 |
509 | 1.81 |
510 | 1.9 |
511 | 1.92 |
512 | 1.79 |
513 | 1.82 |
514 | 1.85 |
515 | 1.86 |
516 | 1.85 |
517 | 1.83 |
518 | 1.85 |
519 | 1.83 |
520 | 1.92 |
521 | 1.82 |
522 | 1.85 |
523 | 1.81 |
524 | 1.88 |
525 | 1.86 |
526 | 1.82 |
527 | 1.85 |
528 | 1.81 |
529 | 1.86 |
530 | 1.87 |
531 | 1.88 |
532 | 1.84 |
533 | 1.84 |
534 | 1.84 |
535 | 1.85 |
536 | 1.8 |
537 | 1.87 |
538 | 1.84 |
539 | 1.8 |
540 | 1.79 |
541 | 1.91 |
542 | 1.83 |
543 | 1.89 |
544 | 1.84 |
545 | 1.88 |
546 | 1.81 |
547 | 1.83 |
548 | 1.9 |
549 | 1.88 |
550 | 1.86 |
551 | 1.81 |
552 | 1.84 |
553 | 1.8 |
554 | 1.81 |
555 | 1.84 |
556 | 1.93 |
557 | 1.93 |
558 | 1.83 |
559 | 1.85 |
560 | 1.81 |
561 | 1.86 |
562 | 1.85 |
563 | 1.82 |
564 | 1.88 |
565 | 1.89 |
566 | 1.81 |
567 | 1.92 |
568 | 1.86 |
569 | 1.83 |
570 | 1.86 |
571 | 1.79 |
572 | 1.83 |
573 | 1.82 |
574 | 1.85 |
575 | 1.85 |
576 | 1.9 |
577 | 1.88 |
578 | 1.89 |
579 | 1.91 |
580 | 1.83 |
581 | 1.86 |
582 | 1.91 |
583 | 1.88 |
584 | 1.84 |
585 | 1.86 |
586 | 1.81 |
587 | 1.86 |
588 | 1.83 |
589 | 1.89 |
590 | 1.86 |
591 | 1.83 |
592 | 1.83 |
593 | 1.83 |
594 | 1.89 |
595 | 1.87 |
596 | 1.81 |
597 | 1.86 |
598 | 1.86 |
599 | 1.82 |
600 | 1.84 |
601 | 1.85 |
602 | 1.83 |
603 | 1.86 |
604 | 1.88 |
605 | 1.86 |
606 | 1.89 |
607 | 1.86 |
608 | 1.86 |
609 | 1.81 |
610 | 1.87 |
611 | 1.91 |
612 | 1.87 |
613 | 1.87 |
614 | 1.78 |
615 | 1.89 |
616 | 1.82 |
617 | 1.86 |
618 | 1.9 |
619 | 1.81 |
620 | 1.88 |
621 | 1.83 |
622 | 1.9 |
623 | 1.83 |
624 | 1.86 |
625 | 1.84 |
626 | 1.84 |
627 | 1.85 |
628 | 1.86 |
629 | 1.86 |
630 | 1.87 |
631 | 1.86 |
632 | 1.85 |
633 | 1.8 |
634 | 1.84 |
635 | 1.83 |
636 | 1.87 |
637 | 1.83 |
638 | 1.93 |
639 | 1.9 |
640 | 1.85 |
641 | 1.89 |
642 | 1.81 |
643 | 1.8 |
644 | 1.92 |
645 | 1.81 |
646 | 1.88 |
647 | 1.77 |
648 | 1.82 |
649 | 1.9 |
650 | 1.88 |
651 | 1.84 |
652 | 1.81 |
653 | 1.85 |
654 | 1.85 |
655 | 1.82 |
656 | 1.9 |
657 | 1.85 |
658 | 1.85 |
659 | 1.85 |
660 | 1.83 |
661 | 1.84 |
662 | 1.85 |
663 | 1.85 |
664 | 1.9 |
665 | 1.85 |
666 | 1.86 |
667 | 1.83 |
668 | 1.84 |
669 | 1.84 |
670 | 1.87 |
671 | 1.85 |
672 | 1.81 |
673 | 1.92 |
674 | 1.81 |
675 | 1.86 |
676 | 1.88 |
677 | 1.87 |
678 | 1.8 |
679 | 1.9 |
680 | 1.86 |
681 | 1.85 |
682 | 1.85 |
683 | 1.88 |
684 | 1.85 |
685 | 1.81 |
686 | 1.82 |
687 | 1.89 |
688 | 1.9 |
689 | 1.89 |
690 | 1.82 |
691 | 1.85 |
692 | 1.86 |
693 | 1.88 |
694 | 1.89 |
695 | 1.85 |
696 | 1.84 |
697 | 1.84 |
698 | 1.93 |
699 | 1.88 |
700 | 1.88 |
701 | 1.83 |
702 | 1.84 |
703 | 1.85 |
704 | 1.83 |
705 | 1.89 |
706 | 1.83 |
707 | 1.82 |
708 | 1.89 |
709 | 1.83 |
710 | 1.85 |
711 | 1.85 |
712 | 1.86 |
713 | 1.85 |
714 | 1.82 |
715 | 1.86 |
716 | 1.84 |
717 | 1.86 |
718 | 1.86 |
719 | 1.86 |
720 | 1.88 |
721 | 1.79 |
722 | 1.84 |
723 | 1.85 |
724 | 1.84 |
725 | 1.86 |
726 | 1.8 |
727 | 1.8 |
728 | 1.85 |
729 | 1.87 |
730 | 1.82 |
731 | 1.81 |
732 | 1.84 |
733 | 1.84 |
734 | 1.84 |
735 | 1.88 |
736 | 1.92 |
737 | 1.8 |
738 | 1.85 |
739 | 1.88 |
740 | 1.87 |
741 | 1.89 |
742 | 1.89 |
743 | 1.85 |
744 | 1.84 |
745 | 1.83 |
746 | 1.88 |
747 | 1.91 |
748 | 1.83 |
749 | 1.83 |
750 | 1.88 |
751 | 1.85 |
752 | 1.84 |
753 | 1.9 |
754 | 1.87 |
755 | 1.83 |
756 | 1.85 |
757 | 1.89 |
758 | 1.81 |
759 | 1.9 |
760 | 1.88 |
761 | 1.88 |
762 | 1.85 |
763 | 1.9 |
764 | 1.87 |
765 | 1.9 |
766 | 1.88 |
767 | 1.81 |
768 | 1.85 |
769 | 1.88 |
770 | 1.83 |
771 | 1.83 |
772 | 1.84 |
773 | 1.87 |
774 | 1.92 |
775 | 1.82 |
776 | 1.86 |
777 | 1.84 |
778 | 1.86 |
779 | 1.82 |
780 | 1.9 |
781 | 1.85 |
782 | 1.81 |
783 | 1.83 |
784 | 1.85 |
785 | 1.83 |
786 | 1.86 |
787 | 1.85 |
788 | 1.81 |
789 | 1.84 |
790 | 1.92 |
791 | 1.83 |
792 | 1.88 |
793 | 1.87 |
794 | 1.89 |
795 | 1.83 |
796 | 1.83 |
797 | 1.92 |
798 | 1.9 |
799 | 1.84 |
800 | 1.84 |
801 | 1.83 |
802 | 1.83 |
803 | 1.83 |
804 | 1.85 |
805 | 1.8 |
806 | 1.82 |
807 | 1.84 |
808 | 1.83 |
809 | 1.88 |
810 | 1.85 |
811 | 1.81 |
812 | 1.85 |
813 | 1.84 |
814 | 1.85 |
815 | 1.82 |
816 | 1.84 |
817 | 1.85 |
818 | 1.86 |
819 | 1.85 |
820 | 1.83 |
821 | 1.81 |
822 | 1.84 |
823 | 1.89 |
824 | 1.85 |
825 | 1.79 |
826 | 1.9 |
827 | 1.85 |
828 | 1.86 |
829 | 1.85 |
830 | 1.88 |
831 | 1.86 |
832 | 1.84 |
833 | 1.83 |
834 | 1.83 |
835 | 1.86 |
836 | 1.88 |
837 | 1.85 |
838 | 1.8 |
839 | 1.84 |
840 | 1.88 |
841 | 1.85 |
842 | 1.83 |
843 | 1.85 |
844 | 1.85 |
845 | 1.83 |
846 | 1.84 |
847 | 1.86 |
848 | 1.84 |
849 | 1.82 |
850 | 1.86 |
851 | 1.94 |
852 | 1.8 |
853 | 1.85 |
854 | 1.85 |
855 | 1.84 |
856 | 1.81 |
857 | 1.88 |
858 | 1.86 |
859 | 1.81 |
860 | 1.81 |
861 | 1.86 |
862 | 1.79 |
863 | 1.81 |
864 | 1.79 |
865 | 1.9 |
866 | 1.82 |
867 | 1.83 |
868 | 1.84 |
869 | 1.9 |
870 | 1.89 |
871 | 1.86 |
872 | 1.85 |
873 | 1.85 |
874 | 1.84 |
875 | 1.82 |
876 | 1.86 |
877 | 1.84 |
878 | 1.85 |
879 | 1.83 |
880 | 1.81 |
881 | 1.86 |
882 | 1.9 |
883 | 1.79 |
884 | 1.79 |
885 | 1.86 |
886 | 1.82 |
887 | 1.86 |
888 | 1.83 |
889 | 1.8 |
890 | 1.83 |
891 | 1.89 |
892 | 1.84 |
893 | 1.82 |
894 | 1.86 |
895 | 1.83 |
896 | 1.89 |
897 | 1.8 |
898 | 1.87 |
899 | 1.86 |
900 | 1.87 |
901 | 1.83 |
902 | 1.85 |
903 | 1.78 |
904 | 1.8 |
905 | 1.84 |
906 | 1.86 |
907 | 1.85 |
908 | 1.85 |
909 | 1.83 |
910 | 1.88 |
911 | 1.83 |
912 | 1.84 |
913 | 1.86 |
914 | 1.86 |
915 | 1.82 |
916 | 1.87 |
917 | 1.82 |
918 | 1.88 |
919 | 1.81 |
920 | 1.87 |
921 | 1.77 |
922 | 1.83 |
923 | 1.85 |
924 | 1.85 |
925 | 1.81 |
926 | 1.9 |
927 | 1.89 |
928 | 1.87 |
929 | 1.81 |
930 | 1.81 |
931 | 1.84 |
932 | 1.87 |
933 | 1.86 |
934 | 1.82 |
935 | 1.87 |
936 | 1.81 |
937 | 1.87 |
938 | 1.82 |
939 | 1.88 |
940 | 1.87 |
941 | 1.89 |
942 | 1.85 |
943 | 1.86 |
944 | 1.82 |
945 | 1.82 |
946 | 1.8 |
947 | 1.83 |
948 | 1.82 |
949 | 1.83 |
950 | 1.78 |
951 | 1.86 |
952 | 1.9 |
953 | 1.87 |
954 | 1.82 |
955 | 1.81 |
956 | 1.9 |
957 | 1.84 |
958 | 1.89 |
959 | 1.88 |
960 | 1.83 |
961 | 1.81 |
962 | 1.85 |
963 | 1.86 |
964 | 1.86 |
965 | 1.84 |
966 | 1.84 |
967 | 1.83 |
968 | 1.89 |
969 | 1.85 |
970 | 1.87 |
971 | 1.81 |
972 | 1.8 |
973 | 1.85 |
974 | 1.83 |
975 | 1.9 |
976 | 1.83 |
977 | 1.87 |
978 | 1.86 |
979 | 1.85 |
980 | 1.83 |
981 | 1.9 |
982 | 1.79 |
983 | 1.88 |
984 | 1.81 |
985 | 1.8 |
986 | 1.91 |
987 | 1.89 |
988 | 1.88 |
989 | 1.89 |
990 | 1.89 |
991 | 1.8 |
992 | 1.85 |
993 | 1.85 |
994 | 1.83 |
995 | 1.9 |
996 | 1.84 |
997 | 1.87 |
998 | 1.84 |
999 | 1.83 |
1000 | 1.86 |
Our estimate and how much simulated estimates might vary across bootstrapped samples that look like ours
The red is the distribution of bootstrapped sample estimates \(\rightarrow\) the sampling distribution
The red histogram is nice, but how can we communicate uncertainty in our estimates in a pithy, more comparable way?
Three approaches:
One way to quantify uncertainty would be to measure how “wide” the distribution of bootstrapped sample estimates is
As we learned so long ago, one way to measure the “spread” of a distribution (i.e., how much a variable varies), is with the standard deviation
The standard deviation of the sampling distribution is called the standard error, or the margin of error
This is what you see in the news – that +/- polling/margin of error
As our sample size increases, the standard error decreases
Sample size | Average (truth = 10) | Standard error |
---|---|---|
10.00 | 9.12 | 0.74 |
64.44 | 10.06 | 0.28 |
118.89 | 10.11 | 0.19 |
173.33 | 10.07 | 0.16 |
227.78 | 9.89 | 0.13 |
282.22 | 9.94 | 0.12 |
336.67 | 10.00 | 0.11 |
391.11 | 10.08 | 0.10 |
445.56 | 9.99 | 0.09 |
500.00 | 9.92 | 0.09 |
Another way to quantify uncertainty is to look where most estimates fall
this is the confidence interval: our “best guess” of what we’re trying to estimate
You could report (for example) where the middle 50% of bootstraps fall, or (for example) where the middle 95% of bootstraps fall, but there are tradeoffs!
You are 50% “confident” that avg. number of kids could vary between 1.83 and 1.87. Narrower range! But low confidence!
You are 95% “confident” that avg. number of kids could vary between 1.79 and 1.92. Higher range! But higher confidence!
Convention is to look at the middle 95% of the distribution
Where do the middle 95% of the bootstrap estimates fall?
We can use the quantile()
function to get here
The 95% confidence confidence interval for the average number of kids in the US is: (1.80, 1.91)
The standard error and confidence interval are actually telling you the same thing
A 95% confidence interval is roughly equal to the Estimate +/- 1.96 \(\times\) standard error
Use the issues
data, and:
Pick a state of your choosing. What proportion of respondents support the death penalty in that state?
OK, but how certain are you of that? Generate 1,000 bootstraps and plot the distribution.
Calculate the standard error and the 95% confidence interval of your best guess. Convince yourself the two can be made equivalent.
10:00